МОДЕЛИРОВАНИЕ И ПРОГНОЗ

УДК 519.86, 338.27 ББК 65.054 © Кетова К.В., Касаткина Е.В., Насридинова Д.Д.

Прогнозирование показателей социально-экономического развития региона

Анализируются статистические данные об объемах инвестирования в различные сферы социально-экономической системы Удмуртской Республики с 1996 по 2010 год. С учетом прогнозных динамик объемов инвестиций на основе экономико-математических моделей прогнозируются величины производственного и человеческого капиталов на последующий пятилетний период. Решается задача моделирования динамики валового регионального продукта Удмуртской Республики с использованием производственной функции, построенной на основе статистических данных методами корреляционно-регрессионного анализа, и прогнозной динамики производственного и человеческого капиталов.

Инвестиции, производственные фонды, человеческий капитал, валовой региональный продукт, прогнозирование.

Каролина Вячеславовна КЕТОВА

доктор физико-математических наук, профессор, зав. кафедрой Ижевского государственного технического университета им. М.Т. Калашникова ketova k@mail.ru

Екатерина Васильевна КАСАТКИНА

кандидат физико-математических наук, доцент Ижевского государственного технического университета им. М.Т. Калашникова e.v.trushkova@gmail.com

Дайана Дамировна НАСРИДИНОВА

магистрант Ижевского государственного технического университета им. М.Т. Калашникова daiana1604@yandex.ru

Введение

В современном мире экономические прогнозы необходимы для определения приоритетных направлений развития экономических систем, для математической оценки последствий планируемых экономических решений, при построении оптимальных экономических стратегий управления. В этой связи прогнозирование является одним из важных инструментов, применяемых при формировании стратегии и тактики общественного развития.

Основными макроэкономическими показателями, с помощью которых можно оценить состояние региональной экономики, являются производственный капитал, человеческий капитал и валовой региональный продукт.

Производственный капитал (основные производственные фонды $- \, O\Pi \Phi$) является материально-технической основой процесса производства и пополняется за счет капитальных вложений. Он подвержен физическому и моральному износу, поскольку под влиянием различных факторов утрачивает свои свойства. В современной экономике главным критерием, определяющим необходимость обновления производственных фондов, является их соответствие уровню современного научно-технического прогресса. Таким образом, производственные фонды требуют инвестирования, оптимального с точки зрения текущего состояния экономической системы.

Прогнозирование объемов инвестиций в производственный капитал будем осуществлять эконометрическими методами. Прогнозирование же динамики самого производственного капитала будем выполнять на основе модели производственного капитала [1].

Наряду с производственным капиталом важным макроэкономическим показателем является *человеческий капитал*. Он пред-

ставляет собой запас знаний, навыков, опыта, здоровья и культуры. Будем выделять следующие составляющие человеческого капитала: капитал образования, капитал здоровья, капитал культуры. Человеческий капитал, как и производственный, подвержен выбытию, но его амортизация протекает иначе, чем материально-технических ресурсов. В первые годы функционирования человеческого капитала за счет физического взросления работника, а также за счет накопления им производственного опыта экономическая ценность запаса его знаний и способностей отнюдь не уменьшается, как это происходит с физическим капиталом, а, напротив, возрастает. Обычно темпы физического и морального выбытия запаса знаний и квалификации начинают перекрывать значения непрерывно продолжающегося накопления производственного опыта где-то к концу второго десятилетия трудового стажа. Лишь с этого момента начинается процесс «обесценивания» человеческого капитала.

Будем выделять инвестиции в составляющие человеческого капитала: в образование, здравоохранение и культуру. Прогнозирование объемов инвестиций в человеческий капитал будем осуществлять эконометрическими методами. Прогнозирование динамики человеческого капитала будем проводить на основе модели человеческого капитала [2].

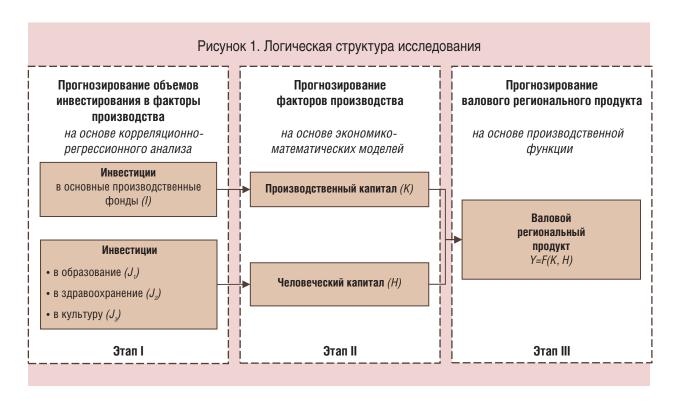
При решении задач прогнозирования экономической динамики используются производственные функции, отражающие влияние факторов производства на выходные показатели экономической системы. В качестве входных факторов — факторов производства — будем рассматривать производственный и человеческий капитал, а в качестве выходного показателя экономической системы — валовой региональный продукт.

Валовой региональный продукт (ВРП) является главной характеристикой результатов производства и используется для оценки уровня экономического развития, темпов экономического роста, анализа производительности труда в экономике.

Прогнозирование валового регионального продукта будем осуществлять на основе построенной производственной функции.

Логическая схема исследования приведена на *puc. 1*.

Таким образом, прогнозирование макроэкономических показателей будем проводить в три этапа: на первом этапе эконометрическими методами осуществляется прогноз инвестиций в производственный капитал и в человеческий капитал; на втором этапе — прогноз самих значений производственного и человеческого капитала на основе математических моделей этих факторов; третий этап заключается в прогнозировании валового регионального продукта в зависимости от величины и


динамики производственного и человеческого капитала на базе построенной производственной функции. Прогнозирование показателей социально-экономического развития региона выполним на примере экономической системы Удмуртской Республики (УР).

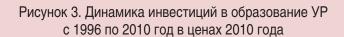
1. Анализ динамики объемов инвестирования в факторы производства

Инвестиции в производственный капитал (I) представляют совокупность затрат, направленных на создание и воспроизводство основных производственных фондов. Они включают в себя новое строительство, а также реконструкцию и модернизацию объектов, приобретение машин, оборудования, транспортных средств и т.д.

Динамика инвестиций в производственный капитал Удмуртской Республики за период с 1996 по 2010 год [3] представлена на *рис. 2*.

Наибольший объем инвестиций, вовлеченных в производственный капитал региона, был в 2008 году и составлял

69 570 тыс. руб. в ценах 2010 года, наименьший — в 1998 году (27 870 тыс. руб.). С 2005 до 2008 года наблюдался высокий темп прироста инвестиций в производственные фонды УР — 24%. Резкий спад объемов инвестирования в производственный капитал после 2008 года может объясняться мировым кризисом. В целом за период с 1996 по 2010 год средний темп прироста составил 2,8% в год.


Инвестиции в человеческий капитал включают капиталовложения в образование (J_1) , здравоохранение (J_2) и культуру (J_3) . Капиталовложения в образование способствуют формированию высококвалифицированных специалистов, труд которых оказывает наибольшее влияние на темпы экономического роста [4]. Инвестиции в здравоохранение приводят к сокращению заболеваний и смертности, продлению трудоспособной жизни человека [5]. Вложения в культуру снижают уровень криминализации общества, повышают творческий потенциал человеческой личности, формируют нравственные ценности человека, что в конечном счете сказывается на эффективности экономики.

Статистические данные инвестиций в человеческий капитал Удмуртской Республики за период 1996—2010 годов [6] представлены на *рисунках 3, 4* и *5*.

Наибольшее значение инвестиций в образование УР наблюдалось в 2007 году и составляло 14,402 млн. руб., наименьшее — в 1997 году (5,457 млн. руб.). В целом за период 1996—2010 годов наблюдается тенденция к росту показателя. Ежегодный темп роста показателя за рассматриваемый период составил 6,4%.

Наибольшее значение инвестиций в здравоохранение УР наблюдалось в 2009 году и составляло 13,051 млн. руб., наименьшее — в 1997 году (4,447 млн. руб.). В целом за период 1996—2010 годов наблюдается тенденция к росту показателя. Ежегодный темп роста показателя за рассматриваемый период составил 9,5%.

Наибольшее значение инвестиций в культуру УР наблюдалось в 2008 году и составляло 2,780 млн. руб., наименьшее — в 1997 году (964 тыс. руб.). В целом за период 1996—2010 годов наблюдается тенденция к росту показателя. Ежегодный темп роста показателя за рассматриваемый период составил 6,5%.

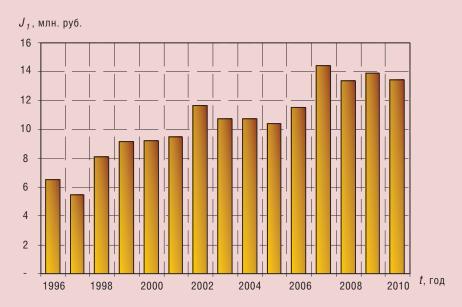
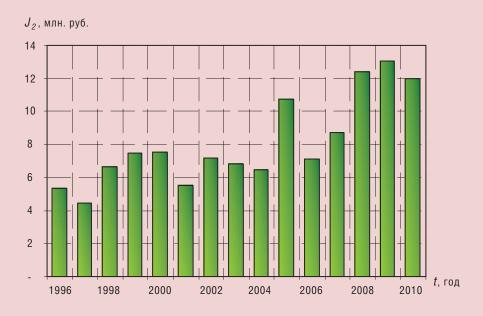



Рисунок 4. Динамика инвестиций в здравоохранение УР с 1996 по 2010 год

2. Прогнозирование объемов инвестирования в факторы производства

Инвестиции в факторы производства относятся к экономическим показателям, которые имеют достаточно сложную структуру. Изменение значений данных показателей во времени в реальной жизни происходит под воздействием каких-либо причин и факторов, которые в силу их многочисленности, сложности измерения, неразработанности теоретических предположений относительно взаимосвязей с показателями не позволяют построить подходящую многофакторную эконометрическую модель классического типа. Поэтому в отношении показателей инвестиций в факторы производства выдвигается предположение о формировании внутренних закономерностей в динамике развития под совокупным воздействием различных причин, влияющих на показатели, которое дает возможность применить эконометрическую модель специфического класса моделей временных рядов.

Моделирование экономических временных рядов путем построения модели тренда, сезонности и циклической составляющей не приводит к удовлетворительным результатам, а ряд остатков часто имеет статистические закономерности. В таком случае используют авторегрессионные модели - скользящего среднего ARMA [7]. Авторегрессионные модели скользящего среднего - применяют для описания стационарных временных рядов. Но, как правило, экономические показатели представляют собой нестационарные временные ряды, поэтому более широкое использование получили интегрированные модели авторегрессии – скользящего среднего ARIMA (p,q,k). Такую модель также называют моделью Бокса-Дженкинса, общий вид которой представлен формулой:

$$\Delta^{k} y(t) = \mu_{0} + \mu_{1} \cdot y(t-1) + \dots + \mu_{p} \cdot y(t-p) + \dots + \varepsilon(t) - \theta_{1} \cdot \varepsilon(t-1) - \dots - \theta_{q} \cdot \varepsilon(t-q), \tag{1}$$

где y(t) — значение уровня ряда в момент времени t; k — порядок разности; μ_0 , μ_1 ,..., μ_p , θ_1 ... θ_q — оцениваемые параметры модели; p — порядок авторегрессионного процесса AR; q — порядок процесса скользящего среднего MA; $\epsilon(t)$ — ошибка (белый шум).

Порядок разности в модели показывает период цикличности и определяется на основе выборочной автокорреляционной функции AC(k), которая описывает корреляцию между значениями изучаемого процесса в различные моменты времени. Необходимо подбирать такой порядок разности k, при котором значимо значение функции AC(k) [7].

Для проверки адекватности моделей прогнозирования и выбора модели построения прогноза инвестиций на краткосрочный период будем вычислять следующие показатели:

- коэффициент детерминации:

$$R^{2} = \frac{\sum_{t=1}^{T} (\tilde{y_{t}} - \bar{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}},$$

где \mathcal{Y}_t — значение ряда, рассчитанное по модели;

- статистика Фишера:

$$F = \frac{R^2}{1 - R^2} \cdot \frac{T - m}{m - 1},$$

где m — количество оцениваемых параметров в модели;

- среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{\sum_{t=1}^{T} (\tilde{y_t} - y_t)^2}{T - m}},$$

критерий Акаике:

$$AIC = 2\frac{p+q}{T} + \ln \left(\frac{\sum_{t=1}^{T} (\tilde{y_t} - y_t)^2}{T} \right)$$

– критерий Шварца:

$$SHC = \frac{(p+q)\ln T}{T} + \ln \left(\frac{\sum_{t=1}^{T} (\tilde{y_t} - y_t)^2}{T} \right)$$

критерий Дарбина—Уотсона:

$$DW = \frac{\sum_{t=2}^{T} ((\tilde{y}_t - y_t) - (\tilde{y}_{t-1} - y_{t-1}))^2}{\sum_{t=1}^{T} (\tilde{y}_t - y_t)^2}.$$

Для проверки на стационарность и обратимость оцененных моделей используются корни характеристического уравнения авторегрессионного процесса и процесса скользящего среднего. Найденные корни по модулю должны быть меньше единицы [7].

Рассмотрим применение модели Бокса— Дженкинса для прогнозирования объемов инвестирования в производственный и человеческий капитал Удмуртской Республики.

С помощью выборочной и частной автокорреляционной функции оценим параметры модели ARIMA(p,q,k) для моделирования динамики инвестиций в производственный капитал ($maбn.\ 1$).

Таблица 1. Значения выборочной автокорреляционной функции для инвестиций в ОПФ

Функция		Порядок, <i>k</i>							
	1	2	3	4	5	6	7		
AC (k)	0,706	0,326	0,009	-0,136	-0,186	-0,188	-0,202		
t-статистика $AC(k)$	3,861*	1,336	0,035	0,532	0,733	0,741	0,799		
PAC (k)	0,706	-0,342	-0,132	0,045	-0,083	-0,064	-0,108		
t-статистика <i>РАС</i> (k)	3,861*	1,410	0,516	0,174	0,323	0,248	0,421		
* Значимость на 5%-м уровне.									

Видно, что значимы коэффициенты выборочной и частной автокорреляционной функции первого порядка, поэтому для моделирования динамики инвестиций в производственный капитал выберем модели: ARIMA (1,0,0), ARIMA (0,1,0), ARIMA (1,1,1).

Из *таблицы 2* видно, что для моделирования динамики инвестиций в производственный капитал УР необходимо использовать модель, параметры которой представлены в *таблице 3*.

Таким образом, модель Бокса—Дженкинса, описывающая динамику инвестиций в производственный капитал Удмуртской Республики, имеет вид:

0,02

0,58

0,30

6,89*

$$\widetilde{I}(t) = 12384.9 + 0.71 \cdot I(t-1).$$
 (2)

При этом коэффициент детерминации R^2 данной модели составляет 0,72. На ее основе выполнили прогнозирование инвестиций в производственный капитал УР на период 2011—2015 годов (см. рис. 2).

Прогнозирование инвестиций в ОПФ по модели (2) демонстрирует стабильный объем инвестиций, который будет наблюдаться до 2015 года включительно (см. табл. 7).

Аналогичным образом, как и для прогнозирования инвестиций в производственный капитал, осуществляем оценку параметров ARIMA(p,q,k) модели для прогнозирования объемов инвестирования в образование $J_1(t)$, здравоохранение $J_2(t)$ и культуру $J_3(t)$.

Для моделирования динамики инвестиций в образование выбираем модель ARIMA(2,2,0) (maбл. 4).

2,01

2,00

1,49

0,17

2,29

Молоп	R ² F		_	AIC	CLIC	DW	Корни	
Модель	n-	Г	σ	AIC	SHC	DW	AR	MA
ARIMA (1,0,0)	0,50	11,89*	13520,8	21,38	21,47	1,51	0,71	-
ARIMA (0,1,0)	0,45	10,49*	13029,3	21,39	21,49	1,54	-	-0,71
ARIMA (1,1,0)	0,54	6,41*	13520,8	21,44	21,58	1,92	0,56	-0,33
ARIMA (1,0,1)	0,02	0,23	10797,0	21,61	21,70	1,85	0,14	-

21,51

20,93

21,61

21,06

103375,4

14122,0

Таблица 2. Оценка качества моделей для прогнозирования инвестиций в ОПФ

ARIMA (0,1,1)

ARIMA (1,1,1)

Таблица 3. Параметры идентификации модели для прогнозирования инвестиций в ОПФ

Коэффициент	Значение	<i>t</i> -статистика					
μ_{0}	12384,9	1,38					
$\mu_{_1}$	0,71	3,45*					
* Значимость на 5%-м уровне.							

Таблица 4. Параметры идентификации модели для прогнозирования инвестиций в образование

Коэффициент	Значение	t-статистика					
μ_0	18091,9	7,78*					
μ_2	0,87	7,33*					
θ_2	-0,94	14,47*					
* Значимость на 5%-м уровне.							

^{*} Значимость на 5%-м уровне.

Модель Бокса—Дженкинса для описания динамики инвестиций в образование Удмуртской Республики ($R^2 = 0.82$) представлена формулой:

$$\widetilde{J}_1(t) = 18091,9 + 0,87 \cdot J_1(t-2) +$$

$$+ \varepsilon(t) - 0,94 \cdot \varepsilon(t-2). \tag{3}$$

Прогнозирование инвестиций в образование по модели Бокса—Дженкинса (3) предполагает средний темп прироста инвестиций 2,2%, который будет наблюдаться до 2015 года (см. табл. 7).

Оценим параметры модели Бокса— Дженкинса для моделирования динамики инвестиций в здравоохранение (*табл. 5*).

Модель Бокса—Дженкинса для прогнозирования инвестиций в здравоохранение Удмуртской Республики ($R^2 = 0,60$) имеет вил:

$$\widetilde{J}_2(t) = 15465.9 + 1.23 \cdot J_2(t-1) - 0.28 \cdot J_2(t-2) +$$

$$+ \varepsilon(t) - 1.00 \cdot \varepsilon(t-1). \tag{4}$$

Прогнозные значения инвестиций в образование по модели Бокса—Дженкинса (4) представлены в таблице 7.

Средний темп роста на прогнозный период составит 1,0% в год.

Оценим параметры модели Бокса— Дженкинса для моделирования динамики инвестиций в культуру (*табл. 6*).

Модель Бокса—Дженкинса для прогнозирования динамики инвестиций в культуру Удмуртской Республики ($R^2 = 0,69$) имеет вил:

$$\widetilde{J}_3(t) = 2675, 5 - 0, 70 \cdot J_3(t-1) + 0, 21 \cdot J_3(t-2) +$$

$$+ \varepsilon(t) - 0, 99 \cdot \varepsilon(t-2). \tag{5}$$

В результате прогнозирования инвестиций в культуру видно, что данный показатель будет расти до 2015 года в среднем на 3,5% в год.

Результаты построения прогнозов объема инвестирования в факторы производства представлены в табл. 7 и на *рис.* 6.

Спрогнозировав объемы инвестирования в производственные фонды и человеческий капитал региональной экономики на 2011—2015 годы, можем построить прогноз величины производственного и человеческого капитала на этот же период.

Таблица 5. Параметры идентификации модели для прогнозирования инвестиций в здравоохранение

Коэффициент	Значение	<i>t</i> -статистика
μ_{0}	15465,9	0,50
$\mu_{\scriptscriptstyle 1}$	1,23	2,89*
μ_2	-0,28	0,56
θ_{2}	-1,00	3,80*

Таблица 6. Параметры идентификации модели для прогнозирования инвестиций в культуру

Коэффициент	Значение	<i>t</i> -статистика	
μ_0	2675,5	1,77**	
$\mu_{_1}$	-0,70	2,48*	
μ_2	0,21	0,74	
θ_2	-0,99	3.91*	

^{*} Значимость на 5%-м уровне.

^{**} Значимость на 10%-м уровне.

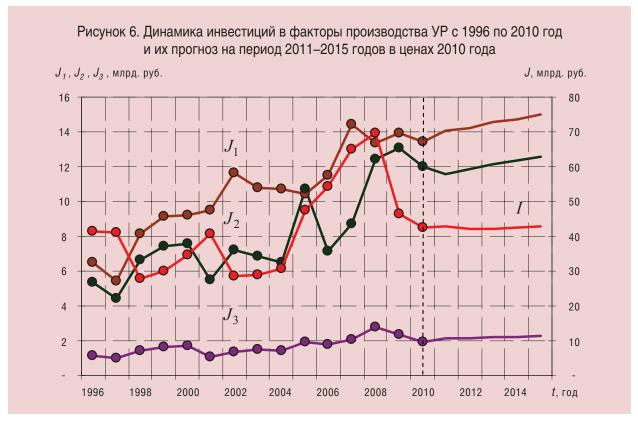


Таблица 7. Сводная таблица по прогнозам объема инвестирования в факторы производства УР на 2011–2015 годы, млн. руб., в ценах 2010 года

Год	Инвестиции	Инвестиции	Инвестиции	Инвестиции	Суммарные инвестиции
ТОД	в производственный капитал	в образование	в здравоохранение	в культуру	в человеческий капитал
2011	42 772,04	14 057,52	11 603,93	2 124,80	27 786,25
2012	42 113,50	14 205,43	11 881,01	2 166,48	28 252,92
2013	42 012,77	14 576,43	12 138,21	2 205,00	28 919,65
2014	42 346,72	14 705,27	12 376,97	2 240,60	29 322,84
2015	42 933,72	15 028,44	12 598,59	2 273,51	29 900,54

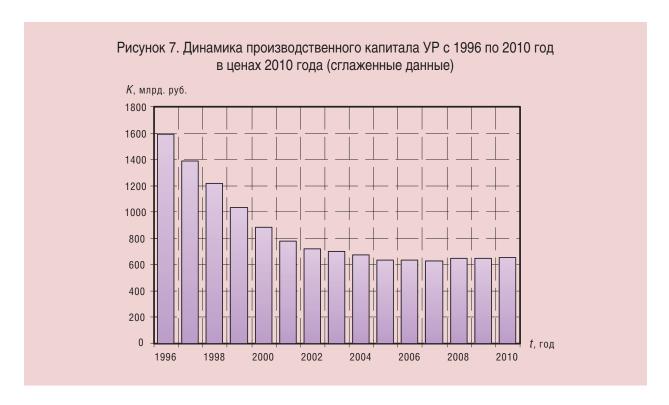
3. Прогнозирование факторов производства

Динамика производственного капитала в Удмуртской Республике представлена на *рис.* 7.

По графику видно, что происходит снижение основных производственных фондов Удмуртской Республики, которое ежегодно составляло 5,4%.

Для моделирования динамики основных производственных фондов использовалась экономико-математическая модель [1]:

$$\frac{dK(t)}{dt} = I(t) - \eta K(t), \tag{6}$$


с начальными условиями:

$$K(t = t_0) = K_0,$$
 (7)

где K(t) — величина производственных фондов в момент времени t; I(t) — величина инвестиций в производственный капитал в момент времени t; η — коэффициент выбытия производственного капитала, определяемый как средневзвешенное значение по формуле:

$$\eta = \frac{\sum_{t=1}^{T-1} K(t) \cdot (I(t) - \Delta K(t))}{\sum_{t=1}^{T-1} K^2(t)},$$
 (8)

где
$$\Delta K(t) = K(t+1) - K(t)$$
.

Для экономической системы УР коэффициент η составляет 0,116.

В результате решения дифференциального уравнения (6)—(7) с использованием численной схемы явного метода Эйлера и с учетом прогнозных значений инвестиций в ОПФ получили прогнозные величины производственного капитала УР на период 2011—2015 годов (см. рис. 9, табл. 8).

Динамика человеческого капитала в Удмуртской Республике представлена на *puc. 8*.

По графику видно, что происходит стабильный рост человеческого капитала Удмуртской Республики, который ежегодно составлял 7,1%.

В [2] представлена экономико-математическая модель динамики человеческого капитала:

$$\frac{dH(t)}{dt} = \bar{\varepsilon}J(t) - \chi H(t), \tag{9}$$

$$H(t = t_0) = H_0,$$
 (10)

где H(t) — величина человеческого капитала в момент времени t; J(t) — величина инвестиций

в человеческий капитал в момент времени t; χ — норма амортизации человеческого капитала; $\bar{\mathcal{E}}$ — средняя доля населения, участвующая в производстве.

Оценка параметров $\bar{\varepsilon}$ и χ осуществлялась методом наименьших квадратов по формуле:

$$\begin{pmatrix} \overline{\varepsilon} \\ \chi \end{pmatrix} = \begin{pmatrix} \sum_{t} J^{2}(t) - \sum_{t} J(t)H(t) \\ \sum_{t} J(t)H(t) - \sum_{t} H^{2}(t) \end{pmatrix}^{-1} \cdot \begin{pmatrix} \sum_{t} J(t)\Delta H(t) \\ \sum_{t} H(t)\Delta H(t) \end{pmatrix}$$
(11)

где
$$\Delta H(t) = H(t+1) - H(t)$$
.

Коэффициенты χ и $\bar{\varepsilon}$, рассчитанные по статистическим данным для экономической системы УР, составляют 0,016 и 0,739 соответственно.

Для численного решения дифференциального уравнения (9)—(10) также использовали явную схему Эйлера и с учетом прогнозных значений инвестиций в человеческий капитал получили динамику прогнозных значений человеческого капитала УР на 2011—2015 годы, которая представлена на рис. 9.

Прогнозируется тенденция к снижению производственного капитала (4,5% в год) одновременно с ростом человеческого капитала (5,0% в год) до 2015 года (см. табл. 8).

Далее, имея представление о дальнейших тенденциях развития основных факторов производства Удмуртской Республики, можно выполнить прогноз валового регионального продукта.

3. Прогнозирование валового регионального продукта

Рассмотрим производственную функцию в виде функции Кобба—Дугласа [8]:

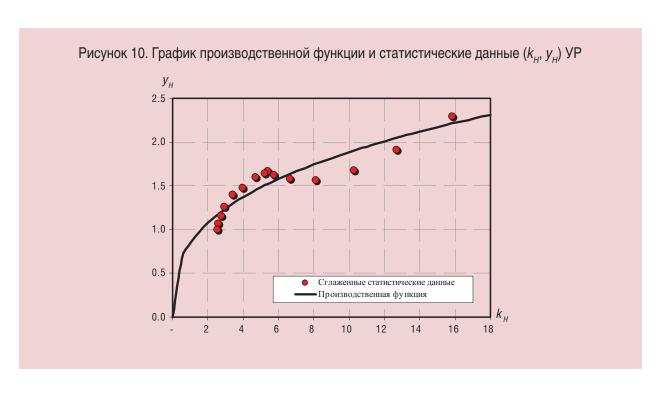
$$Y(t) = A[K(t)]^{\alpha} [H(t)]^{\beta}. \tag{12}$$

На производственную функцию наложим ограничение ее линейной однородности $\alpha + \beta = 1$, поскольку без учета данного условия параметры оцениваемой функции статистически незначимы, ввиду высокой зависимости (мультиколлинеарности) между рассматриваемыми входными факторами К и Н. С учетом условия однородности формула (12) приведена к виду:

$$y_H(t) = A[k_H(t)]^{\alpha}, \tag{13}$$

где
$$y_H(t) = Y(t)/H(t), k_H(t) = K(t)/H(t).$$

Построение производственной функции (13) проводилось на сглаженных статистических данных по значениям человеческого капитала, производственного капитала и валового регионального продукта за период 1996—2010 годов [6, 7].


Производственная функция Удмуртской Республики имеет вид (см. рис. 4):

$$Y(t) = 0.84[K(t)]^{0.35}[H(t)]^{0.65},$$
 (14)

при этом коэффициент детерминации $R^2 = 0,84$, статистика Фишера F = 67,3.

На *puc.* 10 показан график производственной функции УР в удельных величинах. Следует отметить, что модель производственной функции близка к статистическим значениям (k_H , y_H) по УР.

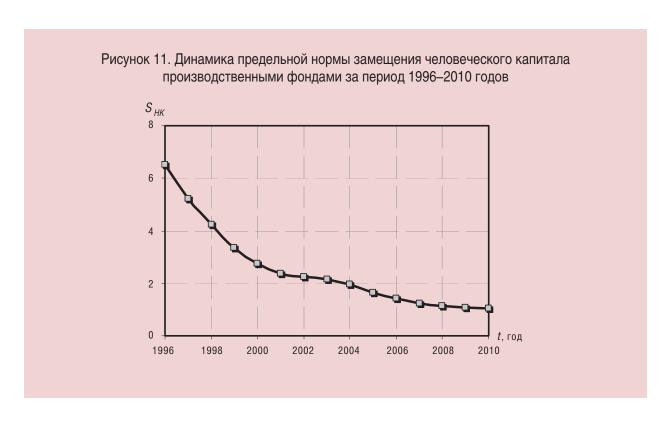
Для экономической системы региона коэффициент A=0.84 свидетельствует о невысоком уровне технического прогресса. Значения коэффициентов эластичности по производственному капиталу ($\alpha=0.35$) и человеческому капиталу ($\beta=0.65$) показывают, что увеличение затрат на производственные фонды на 1% соответствуют увеличению выпуска продукции на 0.35%; а увеличение расходов на человеческий капитал на $1\%-\kappa$ увеличению выпуска на 0.65%. Отношение коэффициентов эластичности $\alpha/\beta=0.54$, следовательно, экономическая система УР

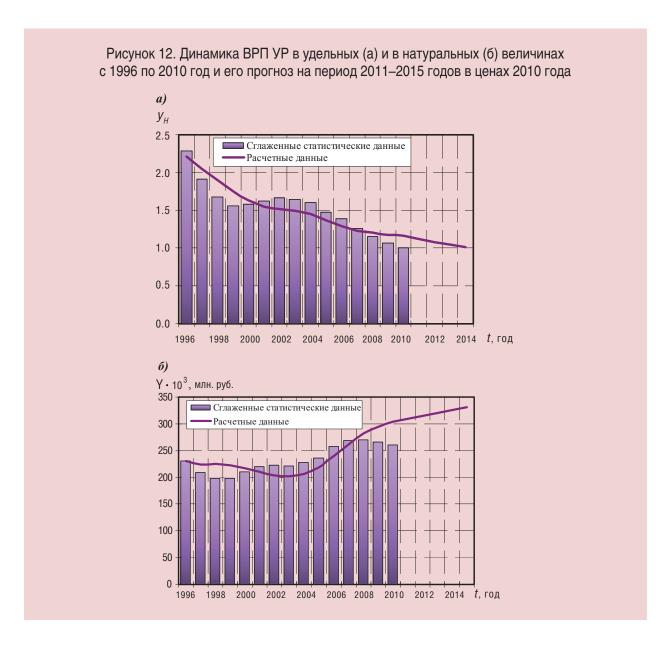
работает в условиях дефицита второго входного фактора (человеческого капитала), имеет место экстенсивный (фондосберегающий) рост.

При анализе производственной функции рассматривается показатель, характеризующий возможность замещения одного фактора другим — предельную норму замещения человеческого капитала производственным [9]:

$$S_{HK} = \frac{\partial Y/\partial H}{\partial Y/\partial K} = \frac{\beta}{\alpha} k_H. \tag{15}$$

Соответствующие значения (15) за исследуемый промежуток времени представлены на *puc*. 11.


Величина S_{HK} определяет отношение приращений ресурсов, приводящих в отдельности к приращению одного и того же объема производства. Так, например, для 2010 года, где $S_{HK}=1,05$, следует, что для приращения производства одного и того же количества Y


фактор K требует приращения в 1,05 раза больше, чем фактор H.

Экономический смысл полученного результата, представленного на рис. 10, состоит в том, что и по сей день ($S_{HK} > 1$) более выгодным является увеличение вложений в человеческий капитал.

Прогнозная динамика производственного и человеческого капитала дает возможность спрогнозировать по оцененной производственной функции (14) валовой региональный продукт УР (рис. 12).

Согласно проведенным оценкам, в перспективе до 2015 года прогнозируется рост показателя валового регионального продукта за счет увеличения темпов роста человеческого капитала региона. Средний темп прироста объема валового регионального продукта на 2011—2015 годы достигнет 1,8%. При благоприятнейших условиях в экономической системе прогнозное значение ВРП в 2015 году составит 330 926 млн. руб., что на 9,0% выше, чем в 2010 году.

Заключение

В ходе исследования, выполненного согласно рассмотренной в работе методике (см. рис. 1), были получены результаты краткосрочного прогнозирования основных показателей социально-экономического развития Удмуртской Республики на период 2011—2015 годов (табл. 8).

Таким образом, мы получили прогнозные значения макроэкономических показателей Удмуртской Республики на период 2011—2015 годов на основе сложившейся в настоящее время тенденции развития

экономической системы региона. Прогнозируемое продолжение снижения объемов производственных фондов составляет в среднем 4,5% в год, ежегодный рост человеческого капитала составит в среднем 5,0%. Валовой региональный продукт будет возрастать в среднем ежегодно на 1,8%.

Следует отметить, что полученная в результате математического моделирования прогнозная динамика совпадает с умеренно-оптимистичным прогнозом развития Удмуртской Республики до 2015 года [10]. Основным условием умеренно-

	Производственный капитал		Человеческий капитал			Валовой региональный продукт			
Год	Прогноз, млн. руб.	% к пред. году	% к 2010 г.	Прогноз, млн. руб.	% к пред. году	% к 2010 г.	Прогноз, млн. руб.	% к пред. году	% к 2010 г.
2011	623 752,20	95,8	95,8	276 099,10	106,5	106,5	309 879,87	102,1	102,1
2012	593 660,53	95,2	91,2	290 775,58	105,3	112,2	315 045,34	101,7	103,8
2013	567 001,35	95,5	87,1	305 599,92	105,1	117,9	320 255,87	101,7	105,5
2014	543 393,60	95,8	83,5	320 578,31	104,9	123,7	325 542,29	101,7	107,3
2015	522 495,40	96,2	80,3	335 712,14	104,7	129,6	330 926,04	101,7	109,0

Таблица 8. Сводная таблица прогноза макроэкономических показателей УР на 2011–2015 годы

оптимистичного сценария развития является восстановительный характер развития секторов экономики региона при сохранении ориентации на эксплуатацию доступных ресурсов, к которым и относятся производственный и человеческий капитал.

Расчеты показали, что более выгодно осуществлять вложения в человеческий капитал, поскольку экономика Удмуртской Республики на сегодняшний день находится в условиях дефицита человеческого капитала, что следует из вида полученной на основе статистических данных за период 1996—2010 годов производственной функции экономической системы региона.

Представленный в работе математический метод прогнозирования позволяет проводить параметрические исследования и анализировать пути повышения темпов роста макроэкономических показателей региона. Так, например, для достижения ежегодного повышения роста валового регионального продукта на 5% в период 2011—2015 годов необходимо реализовать один из перечисленных ниже сценариев:

1. Увеличить объемы инвестирования в производственный капитал на 44,8% в год (это составит 35 млрд. руб./год) при сохранении темпов роста инвестиций в человеческий капитал. В этом случае существующая в настоящее время тенденция

к снижению величины производственного капитала изменится, он будет увеличиваться ежегодно на 5,5% в год.

- 2. Увеличить объемы государственных вложений в человеческий капитал на 32,5% в год (это составит 14 млрд. руб./год) при сохранении темпов роста инвестиций в производственный капитал. В этом случае произойдет увеличение темпов роста величины человеческого капитала с 5,0 до 9,9% в год.
- 3. Стимулировать экономический рост за счет одновременного увеличения инвестиций в производственный и человеческий капитал. В этом случае для достижения ежегодного 5%-го приращения ВРП следует увеличивать инвестиции в производственный капитал на 20,8% в год (12 млрд. руб./год) и в человеческий капитал на 18,8% в год (6 млрд. руб./год). При этом будет наблюдаться рост объемов производственных фондов на 0,1% в год и человеческого капитала на 7,8% в год.

Таким образом, для увеличения сложившихся в настоящее время темпов развития социально-экономической системы Удмуртской Республики необходимо перевести ее на новый уровень развития, обновив технологическую базу в приоритетных секторах экономики и построив улучшенную систему капитализации человеческих ресурсов.

Литература

- 1. Кетова, К.В. Идентификация и прогнозирование обобщающих показателей развития региональной экономической системы / К.В. Кетова, И.Г. Русяк // Прикладная эконометрика. Москва: Синергия ПРЕСС, 2009. № 3. С. 56-71.
- 2. Кетова, К.В. Экономико-математическая модель анализа и прогноза фактора человеческого капитала / К.В. Кетова, И.Г. Русяк // Экономика, статистика, информатика. Вестник УМО. Москва: МЭСИ, 2007. № 2. С. 56-60.
- 3. Федеральная служба государственной статистики РФ [Электронный ресурс]. URL: http://www.gks.ru (дата обращения 10.02.2013).
- 4. Галаева, Е.В. Исследование человеческого капитала в зарубежной литературе / Е.В. Галаева // Общество и экономика. -1997. -№ 7. C. 244-255.
- 5. Макконелл, К.Р. Экономикс: принципы, проблемы и политика / К.Р. Макконелл. К.: Хагар-Демос, 1993. 785 с.
- 6. Отчетность об исполнении консолидированного бюджета РФ / Министерство финансов Российской Федерации; Федеральное казначейство (Казначейство России) [Электронный ресурс]. URL: http://www.roskazna.ru (дата обращения 10.02.2013).
- 7. Айвазян, С.А. Прикладная статистика и основы эконометрики / С.А. Айвазян, В.С. Мхитарян.— М.: ЮНИТИ, 1998. 1005 с.
- 8. Клейнер, Г.Б. Производственные функции: теория, методы, применение / Г.Б. Клейнер. М.: Финансы и статистика, 1986. 239 с.
- 9. Ашманов, С.А. Введение в математическую экономику / С.А. Ашманов. М.: Наука, 1984. 293 с.
- 10. Экономические новости. Утвержден прогноз социально-экономического развития Удмуртии до 2015 года [Электронный ресурс] // Свое дело. URL: http://svdelo.ru/ekonomika-udmurtii (дата обращения 04.03.2013).