22.11.202411.2024с 01.01.2024
Просмотры
Посетители
* - в среднем в день за текущий месяц
RuEn

рубрика "Моделирование и прогнозирование социально-экономических процессов"

Агент-ориентированная суперкомпьютерная демографическая модель России: анализ апробации

Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Сушко Г.Б.

Том 12, №6, 2019

Агент-ориентированная суперкомпьютерная демографическая модель России: анализ апробации / В.Л. Макаров, А.Р. Бахтизин, Е.Д. Сушко, Г.Б. Сушко // Экономические и социальные перемены: факты, тенденции, прогноз. 2019. Т. 12. № 6. С. 74–90. DOI: 10.15838/esc.2019.6.66.4

DOI: 10.15838/esc.2019.6.66.4

  1. Разработка агент-ориентированной демографической модели России и ее суперкомпьютерная реализация / В.Л. Макаров, А.Р. Бахтизин, Е.Д. Сушко, Г.Б. Сушко // Вычислительные методы и программирование. 2018. Т. 19. С. 368–378. DOI: 10.26089/NumMet.v19r433.
  2. Billari F.C., Prskawetz A., Diaz B.A., Fent T. The “Wedding-Ring”: an agent-based marriage model based on social interaction. Demographic Research, 2007, vol. 17, article 3, pp. 59–82.
  3. Diaz B.A. Agent-Based Models on Social Interaction and Demographic Behaviour (Ph.D. Thesis). Wien: Technische Universität, 2010. 93 p.
  4. Silverman E., Bijak J., Hilton J., Cao V.D., Noble J. When demography met social simulation: a tale of two modelling approaches. Journal of Artificial Societies and Social Simulation (JASSS), 2013, vol. 16 (4), article 9. Available at: http://jasss.soc.surrey.ac.uk/16/4/9.html.
  5. Silverman E., Bijak J., Noble J., Cao V., Hilton J. Semi-artificial models of populations: connecting demography with agent-based modelling. In: Chen S.-H. et al. (Eds.). Advances in Computational Social Science. Agent-Based Social Systems. Vol. 11. Tokyo: Springer Japan, 2014. Pp. 177–189. DOI: 10.1007/978-4-431-54847-8_12.
  6. Billari F.C., Prskawetz A. (Eds.). Agent-Based Computational Demography: Using Simulation to Improve Our Understanding of Demographic Behaviour. Heidelberg: Springer – Verlag, 2003. 210 p.
  7. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям: философия, психология, информатика. М.: Эдиториал УРСС, 2002. 352 с.
  8. Collier N., North M. Parallel agent-based simulation with Repast for High Performance Computing. Simulation, 2012, vol. 89, no. 10, pp. 1215–1235. DOI: 10.1177/0037549712462620.
  9. Wittek P., Rubio-Campillo X. Scalable agent-based modelling with cloud HPC resources for social simulations. In: IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom). December 3-6, 2012, Taipei, Taiwan. Pp. 355–362.
  10. Roberts D.J., Simoni D.A., Eubank S. A National scale microsimulation of disease outbreaks. Advances in Disease Surveillance, 2007, vol. 4, no. 15.
  11. Scheutz M., Connaughton R., Dingler A., Schermerhorn P. SWAGES – an extendable distributed experimentation system for large-scale agent-based alife simulations. In: Proceedings of Artificial Life X, 2006, pp. 412–419. Available at: https://hrilab.tufts.edu/publications/scheutzetal06alifeswages.pdf .
  12. Shaowen W., Yan L., Anand P. Open cyberGIS software for geospatial research and education in the big data era. SoftwareX, 2015, no. 5. DOI: 10.1016/j.softx.2015.10.003.
  13. Tang W., Wang S. HPABM: A hierarchical parallel simulation framework for spatially‐explicit agent‐based models. Transactions in GIS, 2009, no. 13 (3), pp. 315–333.
  14. Cordasco G., Scarano V., Spagnuolo C. Distributed MASON: A scalable distributed multi-agent simulation environment. Simulation Modelling Practice and Theory, 2018, vol. 89, pp. 15–34. DOI: 10.1016/j.simpat.2018.09.002.
  15. Auld J., Hope M., Ley H., Sokolov V., Xua B., Zhang K. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transportation Research Part C: Emerging Technologies, 2016, vol. 64, pp. 101–116.
  16. Borges F., Gutierrez-Milla A., Luque E., Suppi R. Care HPS: A high performance simulation tool for parallel and distributed agent-based modeling. Future Generation Computer Systems, 2017, vol. 68, pp. 59–73.
  17. Gebre M.R. MUSE: A parallel agent-based simulation environment (Doctoral Thesis). Oxford, Ohio: Miami University, 2009. 99 p.
  18. D'Angelo G., Ferretti S. LUNES: Agent-based simulation of P2P systems. In: Proceedings of 2011 IEEE International Conference on High Performance Computing & Simulation, Istanbul, Turkey, July 2011. Pp. 593–599. DOI: 10.1109/HPCSim.2011.5999879.
  19. Emau J., Chuang T., Fukuda M. A multi-process library for multi-agent and spatial simulation. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing - PACRIM'11, Victoria, BC, Canada, August 24–26, 2011. Pp. 369–376.
  20. Karypis G., Kumar V. METIS-unstructured graph partitioning and sparse matrix ordering system, version 2.0. Available at: http://dm.kaist.ac.kr/kse625/resources/metis.pdf.
  21. Tinney W., Walker J. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proceedings of the IEEE, 1967, no. 55 (11), pp. 1801–1809.
  22. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Агеева А.Ф. Искусственное общество и реальные демографические процессы // Экономика и математические методы. 2017. Т. 53. № 1. С. 3–18.
  23. Amdahl G.M. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, 1967, vol. 30, pp. 483–485.
  24. Parker J. A flexible, large-scale, distributed agent based epidemic model. In: Henderson S.G., Biller B., Hsieh M.-H., Shortle J., Tew J.D., Barton R.R. (Eds.). Proceedings of the 2007 Winter Simulation Conference. Washington, D.C. December, 2007. Available at: https://www.brookings.edu/wp-content/uploads/2016/06/12_epidemicmodel_parker.pdf.
  25. Gong Z., Tang W., Bennett D.A., Thill J.C. Parallel agent-based simulation of individual-level spatial interactions within a multicore computing environment. International Journal of Geographical Information Science, 2013, vol. 27, no. 6, pp. 1152–1170.

Полная версия статьи