RuEn

Journal section "Modeling and forecast of socio-economic processes"

COVID-19 Epidemic Modeling – Advantages of an Agent-Based Approach

Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F.

Volume 13, Issue 4, 2020

Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F. COVID-19 epidemic modeling – advantages of an agent-based approach. Economic and Social Changes: Facts, Trends, Forecast, 2020, vol. 13, no. 4, pp. 58–73. DOI: 10.15838/esc.2020.4.70.3

DOI: 10.15838/esc.2020.4.70.3

Abstract   |   Authors   |   References
  1. Kermack W.O., McKendrick A.G. Contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, August 1927. Containing Papers of a Mathematical and Physical Character. Vol. 115, issue 772, pp. 700–721. DOI: 10.1098/rspa.1927.0118.
  2. Noll N.B., Aksamentov I., Druelle V., Badenhorst A., Ronzani B., Jefferies G., Albert J., Neher R. COVID-19 Scenarios: An interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.05.20091363. Available at: https://www.medrxiv.org/content/10.1101/2020.05.05.20091363v2.
  3. Hunter E., Namee B.M., Kelleher J.A Taxonomy for Agent-Based Models in Human Infectious Disease Epidemiology. JASSS, 2017, 20(3), 2. DOI: 10.18564/jasss.3414. Available at: http://jasss.soc.surrey.ac.uk/20/3/2.html.
  4. Perez L., Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 2009, no. 8(50). DOI: 10.1186/1476-072X-8-50.
  5. Frias-Martinez E., Williamson G., Frias-Martinez V. An agent-based model of epidemic spread using human mobility and social network information. In: Proceedings of the 3rd International Conference on Social Computing (SocialCom’11), Boston, MA, USA, 9–11 October 2011. Pp. 49–56. DOI: 10.1109/PASSAT/SocialCom.2011.142.
  6. Aleman D.M., Wibisono T.G. A nonhomogeneous agent-based simulation approach to modeling the spread of disease in a pandemic outbreak. Interfaces, 2011, 41(3), pp. 301–315. DOI: 10.1287/inte.1100.0550.
  7. Epstein J.M. Modelling to contain pandemics. Nature, 2009, vol. 460, p. 687. Available at: http://www.nature.com/nature/journal/v460/n7256/full/460687a.html.
  8. Al-Azazi A.A., Maslennikov B.I. System dynamics simulation model of the spread of the epidemic. Naukovedenie=Naukovedenie, 2014, issue 1. Available at: https://naukovedenie.ru/PDF/30TVN114.pdf (accessed: 30.05.2020) (in Russian).
  9. Ajelli M., Gonçalves B., Balcan D., Colizza V., Hu H., Ramasco J.J., Merler S., Vespignani A. Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 2010, no. 10, p. 190. Available at: https://bmcinfectdis.biomedcentral.com/track/pdf/10.1186/1471-2334-10-190.
  10. Lin Q., Zhao S., Gao D., Lou Y., Yang S., Musa S.S., Wang M.H., Cai Y., Wang W., Yang L., He D. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases, 2020, 93, pp. 211–216. DOI: 10.1016/j.ijid.2020.02.058.
  11. Fokas A.S., Dikaios N., Kastis G.A. COVID-19: Predictive mathematical models for the number of deaths in South Korea, Italy, Spain, France, UK, Germany, and USA. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.08.20095489. Available at: https://www.medrxiv.org/content/10.1101/2020.05.08.20095489v1.
  12. Milani F. COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.07.20094748. Available at: https://www.medrxiv.org/content/10.1101/2020.05.07.20094748v1.
  13. Fokas A.S., Cuevas-Maraver J., Kevrekidis P.G. Two alternative scenarios for easing COVID-19 lockdown measures: One reasonable and one catastrophic. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.08.20095380. Available at: https://www.medrxiv.org/content/10.1101/2020.05.08.20095380v2.
  14. Bhanot G., DeLisi C. Predictions for Europe for the Covid-19 pandemic from a SIR model. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.26.20114058. Available at: https://www.medrxiv.org/content/10.1101/2020.05.26.20114058v2.
  15. Milne G.J., Xie S., Poklepovich D. A Modelling Analysis of strategies for relaxing COVID-19 social distancing. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv, 2020. DOI: 10.1101/2020.05.19.20107425. Available at: https://www.medrxiv.org/content/10.1101/2020.05.19.20107425v1.
  16. Bashabshekh M.M., Maslennikov B.I. Simulation modeling of the spatial spread of epidemics (cholera for example) using the method of cellular automata \ using the Anylogic. Naukovedenie=Naukovedenie, 2013, issue 6. Available at: https://naukovedenie.ru/PDF/135TVN613.pdf (accessed: 30.05.2020) (in Russian).
  17. Megiddo I., Colson A.R., Nandi A., Chatterjee S., Prinja S., Khera A., Laxminarayan R. Analysis of the Universal Immunization Programme and introduction of a rotavirus vaccine in India with IndiaSim. Vaccine, 2014, vol. 32, suppl. 1, pp. A151–A161. DOI: 10.1016/j.vaccine.2014.04.080.
  18. Khalil K.M., Abdel-Aziz M., Nazmy T.T., Abdel-Badeeh Salem M. An agent-based modeling for pandemic influenza in Egypt. In: INFOS 2010: 7th International Conference on Informatics and Systems, Cairo, Egypt, 28-30 March 2010. Pp. 1–7. Available at: https://arxiv.org/ftp/arxiv/papers/1001/1001.5275.pdf.
  19. Makarov V.L., Bakhtizin A.R., Sushko E.D., Sushko G.B. Agent-based supercomputer demographic model of Russia: Approbation analysis. Ekonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz=Economic and Social Changes: Facts, Trends, Forecast, 2019, vol. 12, no. 6, pp. 74–90. DOI: 10.15838/esc.2019.6.66.4 (in Russian).
  20. Makarov V.L., Bakhtizin A.R., Sushko E.D., Sushko G.B. Sistema proektirovaniya masshtabiruemykh agent-orientirovannykh modelei, vklyuchayushchikh populyatsii agentov raznykh tipov s dinamicheski izmenyayushcheisya chislennost'yu i slozhnymi mnogoetapnymi vzaimodeistviyami agentov, obrazuyushchikh sotsial'nye seti [A system for designing scalable agent-based models that include populations of agents of different types with dynamically changing numbers and complex multi-stage interactions of agents forming social networks]. Certificate of registration of a computer program RU 2020612410, 20.02.2020. Application no. 2020611366 from 06.02.2020.

Article views

all: , this year: , this month: , today:

Article downloads

all: , this year: , this month: , today:

View full article