Journal section "Modeling and forecast of socio-economic processes"

Agent-Based Supercomputer Demographic Model of Russia: Approbation Analysis

Makarov V.L., Bakhtizin A.R., Sushko E.D., Sushko G.B.

Volume 12, Issue 6, 2019

Makarov V.L., Bakhtizin A.R., Sushko E.D., Sushko G.B. Agent-based supercomputer demographic model of Russia: approbation analysis. Economic and Social Changes: Facts, Trends, Forecast, 2019, vol. 12, no. 6, pp. 74–90. DOI: 10.15838/esc.2019.6.66.4

DOI: 10.15838/esc.2019.6.66.4

Abstract   |   Authors   |   References
  1. Makarov V.L., Bakhtizin A.R., Sushko E.D., Sushko G.B. Development of an agent-based demographic model of Russia and its supercomputer implementation. Vychislitel'nye metody i programmirovanie=Computational methods and programming, 2018, vol. 19, pp. 368–378. DOI: 10.26089/NumMet.v19r433. (In Russian).
  2. Billari F.C., Prskawetz A., Diaz B.A., Fent T. The “Wedding-Ring”: an agent-based marriage model based on social interaction. Demographic Research, 2007, vol. 17, article 3, pp. 59–82.
  3. Diaz B.A. Agent-Based Models on Social Interaction and Demographic Behaviour (Ph.D. Thesis). Wien: Technische Universität, 2010. 93 p.
  4. Silverman E., Bijak J., Hilton J., Cao V.D., Noble J. When demography met social simulation: a tale of two modelling approaches. Journal of Artificial Societies and Social Simulation (JASSS), 2013, vol. 16 (4), article 9. Available at:
  5. Silverman E., Bijak J., Noble J., Cao V., Hilton J. Semi-artificial models of populations: connecting demography with agent-based modelling. In: Chen S.-H. et al. (Eds.). Advances in Computational Social Science. Agent-Based Social Systems. Vol. 11. Tokyo: Springer Japan, 2014. Pp. 177-189. DOI: 10.1007/978-4-431-54847-8_12.
  6. Billari F.C., Prskawetz A. (Eds.). Agent-Based Computational Demography: Using Simulation to Improve Our Understanding of Demographic Behaviour. Heidelberg: Springer – Verlag, 2003. 210 p.
  7. Tarasov V.B. Ot mnogoagentnykh sistem k intellektual'nym organizatsiyam: filosofiya, psikhologiya, informatika [From multi-agent systems to intellectual organizations: philosophy, psychology, computer science]. Мoscow: Editorial URSS, 2002. 352 p.
  8. Collier N., North M. Parallel agent-based simulation with Repast for High Performance Computing. Simulation, 2012, vol. 89, no. 10, pp. 1215–1235. DOI: 10.1177/0037549712462620.
  9. Wittek P., Rubio-Campillo X. Scalable agent-based modelling with cloud HPC resources for social simulations. In: IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom). December 3-6, 2012, Taipei, Taiwan. Pp. 355–362.
  10. Roberts D.J., Simoni D.A., Eubank S. A National scale microsimulation of disease outbreaks. Advances in Disease Surveillance, 2007, vol. 4, no. 15.
  11. Scheutz M., Connaughton R., Dingler A., Schermerhorn P. SWAGES – an extendable distributed experimentation system for large-scale agent-based alife simulations. In: Proceedings of Artificial Life X, 2006, pp. 412–419. Available at: .
  12. Shaowen W., Yan L., Anand P. Open cyberGIS software for geospatial research and education in the big data era. SoftwareX, 2015, no. 5. DOI: 10.1016/j.softx.2015.10.003.
  13. Tang W., Wang S. HPABM: A hierarchical parallel simulation framework for spatially‐explicit agent‐based models. Transactions in GIS, 2009, no. 13 (3), pp. 315–333.
  14. Cordasco G., Scarano V., Spagnuolo C. Distributed MASON: A scalable distributed multi-agent simulation environment. Simulation Modelling Practice and Theory, 2018, vol. 89, pp. 15–34. DOI: 10.1016/j.simpat.2018.09.002.
  15. Auld J., Hope M., Ley H., Sokolov V., Xua B., Zhang K. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transportation Research Part C: Emerging Technologies, 2016, vol. 64, pp. 101–116.
  16. Borges F., Gutierrez-Milla A., Luque E., Suppi R. Care HPS: A high performance simulation tool for parallel and distributed agent-based modeling. Future Generation Computer Systems, 2017, vol. 68, pp. 59–73.
  17. Gebre M.R. MUSE: A parallel agent-based simulation environment (Doctoral Thesis). Oxford, Ohio: Miami University, 2009. 99 p.
  18. D'Angelo G., Ferretti S. LUNES: Agent-based simulation of P2P systems. In: Proceedings of 2011 IEEE International Conference on High Performance Computing & Simulation, Istanbul, Turkey, July 2011. Pp. 593-599. DOI: 10.1109/HPCSim.2011.5999879.
  19. Emau J., Chuang T., Fukuda M. A multi-process library for multi-agent and spatial simulation. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing - PACRIM'11, Victoria, BC, Canada, August 24–26, 2011. Pp. 369–376.
  20. Karypis G., Kumar V. METIS-unstructured graph partitioning and sparse matrix ordering system, version 2.0. Available at:
  21. Tinney W., Walker J. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proceedings of the IEEE, 1967, no. 55 (11), pp. 1801–1809.
  22. Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F. Artificial society and real demographic processes. Ekonomika i matematicheskie metody=Economics and the Mathematical Methods, 2017, vol. 53, no. 1, pp. 3–18. (In Russian).
  23. Amdahl G.M. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, 1967, vol. 30, pp. 483–485,
  24. Parker J. A flexible, large-scale, distributed agent based epidemic model. In: Henderson S.G., Biller B., Hsieh M.-H., Shortle J., Tew J.D., Barton R.R. (Eds.). Proceedings of the 2007 Winter Simulation Conference. Washington, D.C. December, 2007. Available at:
  25. Gong Z., Tang W., Bennett D.A., Thill J.C. Parallel agent-based simulation of individual-level spatial interactions within a multicore computing environment. International Journal of Geographical Information Science, 2013, vol. 27, no. 6, pp. 1152–1170.

View full article