RuEn

Journal section "Social development"

Hierarchical Pareto Classification of the Russian Regions by the Population’s Quality of Life Indicators

Mironenkov A.A.

Volume 13, Issue 2, 2020

Mironenkov A.A. Hierarchical Pareto classification of the Russian regions by the population’s quality of life indicators. Economic and Social Changes: Facts, Trends, Forecast, 2020, vol. 13, no. 2, pp. 171–185. DOI: 10.15838/esc.2020.2.68.11

DOI: 10.15838/esc.2020.2.68.11

Abstract   |   Authors   |   References
  1. Easterlin R.A. Does Economic growth improve the human lot? Some empirical evidence. In: P.A. David, M.W. Reder. Nations and Households in Economic Growth: Essays in Honor of Moses Abramowitz. N.Y.: Academic Press, 1974, рр. 89–125. Available at: https://doi.org/10.1016/B978-0-12-205050-3.50008-7
  2. Aivazyan S.A. Analiz kachestva i obraza zhizni naseleniya [Analysis of the Quality of Life and the Lifestyle of the Population]. Moscow: Nauka, 2012. 432 p.
  3. Aivazyan S.A. Russia in cross-national analysis of synthetic categories of the quality of population life. Part 1. Analysis Methodology and Example of its Implementation. Mir Rossii. Sotsiologiya. Etnologiya=Universe of Russia, 2001, no. 4, pp. 59–96. (in Russian)
  4. Zhgun T.V. Building an integral measure of the quality of life of constituent entities of the russian federation using the principal component analysis. Ekonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz=Economic and Social Changes: Facts, Trends, Forecast, 2017, vol. 10, no. 2, pp. 214–235. DOI: 10.15838/esc.2017.2.50.12 (in Russian)
  5. Kislitsyna O.A. Izmereniya kachestva zhizni/blagopoluchiya: mezhdunarodnyi opyt [Measurement of the Quality of Life / Well-Being: International Experience]. Moscow: Institut ekonomiki RAN, 2016. 62 p. ISBN 978-5-9940-0541-5
  6. Mkrtchyan N.V., Karachurina L.B. Migration in Russia: flows and centers of attraction. Demoskop Weekly=Demoskop Weekly, 2014, no. 595–596. Available at: http://www.demoscope.ru/weekly/2014/0595/tema01.php (in Russian)
  7. Mints V. On factors of housing prices dynamics. Voprosy ekonomiki=Voprosy Ekonomiki, 2007, no. 2, pp. 111–121. (in Russian)
  8. Smet Yves De, Linett Montano Guzmán. Towards multicriteria clustering: An extension of the k-means algorithm. European Journal of Operational Research, 2004, no. 158 (2), pp. 390–398. Available at: https://doi.org/10.1016/j.ejor.2003.06.012
  9. Leshchaykina M.V. Econometric cross-country analysis of the living population social comfort. Prikladnaya ekonometrika=Applied Econometrics, 2014, no. 36 (4). Pp. 102–117. (in Russian)
  10. Sun Y., Han Jiawei, Zhao Peixiang, Yin Zhijun, Cheng Hong, Wu Tianyi. RankClus: integrating clustering with ranking for heterogeneous information network analysis. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, 2009, pр. 565–576.
  11. Aleskerov F., Ersel H., Yolalan R. Multicriterial ranking approach for evaluatingbank branch performance. International Journal of Information Technology & Decision Making, 2004, vol. 3, no. 2, рр. 321–335. Available at: https://doi.org/10.1142/S021962200400101X
  12. Ramanathan R. ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 2006, vol. 33, no. 3, рр. 695–700. Available at: https://doi.org/10.1016/j.cor.2004.07.014
  13. Douissa M.R., Jabeur K. A New model for multi-criteria ABC inventory classification: PROAFTN method. Procedia Computer Science, 2016, no. 96, pp. 550–559. Available at: https://doi.org/10.1016/j.procs.2016.08.233
  14. Orlov M.A. An algorithm for multicriteria stratification. Biznes-informatika=Business Informatics, 2014, no. 4 (30), pp. 24–35. (in Russian)
  15. Buchanan J.M. The relevance of Pareto optimality. Journal of conflict resolution, 1962, vol. 6, no. 4, pp. 341–354.
  16. Rodríguez J.D., Lozano J.A. Multi-objective learning of multi-dimensional Bayesian classifiers. Eighth International Conference on Hybrid Intelligent Systems, 2008, рр. 501–506. DOI: 10.1109/HIS.2008.143
  17. Satchidananda Dehuri, Sung Bae Cho. Multi-objective classification rule mining using gene expression programming. 2008 Third International Conference on Convergence and Hybrid Information Technology. Busan, 2008, pp. 754–760. DOI: 10.1109/ICCIT.2008.27
  18. Talukder A.K.M., Deb K., Blank J. Visualization of the boundary solutions of high dimensional pareto front from a decision maker's perspective. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2018, July, pp. 201–202. DOI: 10.1145/3205651.3205782
  19. Désilles, A., Zidani, H. Pareto front characterization for multiobjective optimal control problems using Hamilton-Jacobi approach. SIAM Journal on Control and Optimization, 2019, no. 57(6), рр. 3884–3910. doi.org/10.1137/18M1176993.
  20. Shakin V.V. Pareto classification of the finite sample sets, applications of multivariate statistical analysis in economics and assessment of production quality. Proceedings of V Scientific Conference of CIS States, RAS CEMI, 1993.
  21. Kolenikov S. The Methods of the Quality of Life Assessment. NES, 1999.
  22. Grinchel' B.M., Nazarova E.A. Typology of regions by level and dynamics of the quality of life. Ekonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz=Economic and Social Changes: Facts, Trends, Forecast, 2015, no. 3, pp. 111–125. DOI: 10.15838/esc/2015.3.39.9 (in Russian)
  23. Polynev A.O., Grishina I.V., Timonin S.A. Quality of life of Russian regions’ population: Research methodology and results of comprehensive evaluation. Sovremennye proizvoditel'nye sily. Ot dogonyayushchego k operezhayushchemu razvitiyu=Modern Productive Forces. From Catching-up Development to Advanced Development, 2012., no. 1, pp. 70–84. (in Russian)

View full article